Reef balls and cages with flat oysters

Sustainability and the Triple Helix

Authorities & Government

By Tom Scott

Photo by Van Oord

The subject
of sustainability in the Dutch maritime sector can be summed in part by looking
at the outcome of the IMO meeting in London in April last year. This resulted
in the IMO announcing the goal to reduce greenhouse gases by at least 50 per
cent by 2050 (compared to 2008 levels). However, it must also be noted that
sustainability goes far further than the matter of exhaust emissions. It is a
hugely expansive subject that, for the maritime sector, encompasses topics such
as clean air and water, safe and environmentally friendly production processes,
activities that limit environmental damage, and biodiversity in operational
areas, to name just a few.

Maximising sustainable operations to achieve the IMO’s 2050 goal can only be accomplished through an effective interaction between the three major areas involved: government, research institutes and business – often referred to as the ‘triple helix’.

Pending subsidies

Starting
with the Dutch government’s position in this ‘triple helix’, policy and support
in the form of subsidies for the maritime industry certainly exist. For
ship-owners, an extremely pertinent example can be found within the Netherlands
Enterprise Agency. This government agency, operating under the umbrella of the
Dutch Ministry of Economic Affairs and Climate Policy, is in the process of
handling 5.6 million euro of subsidies for sustainable shipbuilding, with a
maximum of 1.25 million euro per application. Aiming, among other things, to
test emissions reduction technologies, the application process for this
sustainable shipbuilding subsidy (Subsidieregeling Duurzame Scheepsbouw in
Dutch) closed in September 2018, and, according to the RVO, is still under
evaluation.

No silver bullet

Dutch ship-owners
play an unquestionably significant role in the maritime sector. Therefore, in
discussing sustainability, the input from the Royal Association of Netherlands
Shipowners (KVNR) is highly valued in order to gain a balanced view. In
representing Dutch ship-owners, the KVNR has taken the IMO goals a step further
to setting down a more ambitious target of a minimum of 70 per cent CO2
reductions by 2050 compared to 2008. When asked about the most important
technical aspects to consider when aiming for this target, KVNR’s adviser on Climate
and Environment Nick Lurkin, responds by highlighting the importance of pushing
towards emissions-free technologies.

“We need zero
emission vessels by 2050 otherwise we’re not going to make it. This means that
the first vessels that will be built in the next 10 to 20 years have to be zero
emissions. We are speaking with MARIN, TNO, various universities and
Netherlands Maritime Technology on how to achieve this.” Taking the subject
further, Lurkin goes on to say that the KVNR does not believe that there is one
technology in particular that will serve as an all-inclusive solution. “There
isn’t a silver bullet in the form of hydrogen, batteries, methanol or ammonia.
Because of this it is indeed difficult for a ship-owner to see what solution is
the best one. You have to fit the technology with the purpose of the vessel
depending on parameters such as ship type, operational profile and trade of the
vessel.” To this end, bearing in mind the numerous options still open, perhaps
more clarity is needed to help ship-owners with their investment decisions.

IMO 2050 goal
Maximising sustainable operations to achieve the IMO’s 2050 goal can only be accomplished through an effective interaction between the three major areas involved: government, research institutes and business – often referred to as the ‘triple helix’. Photo by Marin

New financing models

Noting that a major part of
the KVNR’s activities is to enable profitable operations in a financially
attractive business climate, it is imperative that the subject of economics is
raised when talking about sustainability. For ship-owners of all sizes, one of the most important questions to ask
is how to

ensure that sustainable
operations also remain financially profitable. Marjolein
van Noort, advisor on Economy and Finance at the KVNR, has a justly pragmatic reply. “Remember that 2050 is 31 years from now.
We have gone through a lot of technological changes in the last 30 years but we
didn’t really put finance at the core of the discussion. From a ship-owners
point of view there are two things really important. The first is security on
investment. When investing in a retrofit or a new vessel, you need to be sure
that the investment will last and it is going to be applicable for quite some
years because otherwise the investment is not economically viable. The other
aspect is that new technologies take time to enter the market and first movers
in general pay a higher price.”

“Knowledge is shared”

Van Noort continues by
pointing out the need for a new type of financing tool. “Subsidies are
generally used in small amounts for more experimental technologies. For the more
proven technologies that are already in use, we have to look at new financing options.
We are currently in a transition period where we need different financing tools
than we needed 20 to 30 years ago or will need in 20 or 30 years’ time.”

Concrete proof

The fact
that the Dutch maritime sector’s 2050 goals are actually more ambitious that
the IMO’s own goals will require a large amount of effort. For a marine
contractor like Van Oord, this means that actions speak louder than words. “It’s
no longer enough to say that we are sustainable,” says Van Oord Chief
Operations Officer Paul Verheul. “Clients, project partners, job applicants and
our stakeholders – they all want to see concrete proof of our actions and
impact. It’s no longer the case that clients focus only on the price during a
tender. We’re already dealing with tenders where 40 to 50 percent depends on
price, but the remaining 50 to 60 percent is based on a range of other factors.
For example, we have to estimate our carbon emissions and how many hours our
vessels will be cruising, whether we’ll be consulting the local community,
whether our work will cause turbidity in the water, and so on. In short, we
focus on sustainability because we feel a sense of responsibility, but also
because we have vision: we see that the world around us is increasingly
demanding sustainability.”

Damen fully Electric ferry
Damen Shipyards is involved in numerous EU-funded and facilitated sustainability research projects, for example a fully electric ferry. Photo by Damen

Reinforcing effects

Van Oord
has introduced a programme of Sustainable Earth Actions that demonstrate their
commitment to sustainable operations. “This is built on the sustainability
issues found to be the most relevant for our company and stakeholders and in
which Van Oord has the greatest impact.” Paying a considerable amount of
attention on creating new partnerships, sharing knowledge and pursuing innovation,
Van Oord has initiated several projects that underline the company’s sustainable
ambitions. This includes a cooperative partnership with environmental organisations
the North Sea Foundation and Natuur & Milieu, and Eneco Luchterduinen. Van
Oord has installed reef balls and cages containing oysters at the Luchterduinen
offshore wind farm near IJmuiden, the Netherlands. “The aim of this project is
to investigate how nature conservation and renewable energy generation can
reinforce one another, and whether it can improve biodiversity.” Another joint
project is a consortium to test new methods for large-scale coral recovery at
the Australian Great Barrier Reef. “Due to climate change and coral bleaching,
the reef has lost more than half of its coral since 1985,” explains Verheul. “The
rehabilitation method involves harvesting coral eggs and later transplanting
the coral larvae in places where coral is meant to grow. This proven concept is
already being applied on a small scale.”

The Rich North Sea project
Van Oord installed, in cooperation with the North Sea Foundation, the Natuur & Milieu organisation and Eneco, reef balls and cages containing flat oysters within the Luchterduinen offshore wind farm. The “Rich North Sea” project will investigate how nature conservation and sustainable energy generation can reinforce one another. Photo by Van Oord

Productive collaboration

Van Oord’s
collaborative projects highlight the importance of cooperation with the concept
of the ‘triple helix’. Indeed, the three points of the triangle have worked
together for many years and have accomplished multiple successful projects in
the past. Independent advisors The Future Mobility Network aim to build on this
cooperative foundation. Senior Project Manager Sethi Plaisier explains the
organisation’s ambitions. “Our goal is to push innovations further by bringing the
different parties together. This includes research institutions, government and
commercial companies.”

The Future
Mobility Network focuses on three different areas, smart mobility, smart
shipping and smart logistics. Within the realm of smart shipping, the organisation
has opened the Research Lab Automated Shipping (RAS) recently. “The goal of RAS
is to speed up the process of innovation by setting out a shared research
agenda that is carried out by government, research institutes and commercial
companies. In this way you combine the three worlds with each other. Due to our
experience with freight and smart mobility, there is various cross sector
knowledge which will give smart shipping an extra advantage. The lessons learnt
in smart mobility can be used in smart shipping.”

RAS is a
very real example of the benefits of a productive ‘triple helix’ that
communicates and interacts effectively. “If you look at the market at the
moment, there are many isolated innovations – often from different research
agendas,” Plaisier adds. “By bringing all the different parties together, this
allows us to take all these various pieces of research and put them into one
shared roadmap. Knowledge is shared, the process of innovation is speeded up
and everyone knows where they are working towards.”

“Government, research institutes and business form the triple helix”

European input

The ‘triple
helix’ of government, research institutes and business does not only refer to
the input of national governments. The European Union also provides an
extremely significant and relevant contribution. Damen Shipyards’ research and
development activities serve as an appropriate illustration of such EU
involvement. “We see that our RD&I ambitions are often in line with the
ambitions of the EU,” says Peter van Terwisga, Damen R&D Director. “We also
want to work towards a more sustainable and efficient transport sector. And, as
shipbuilder and technology provider, we have an enormous role – and responsibility
– towards smart, green and integrated transport.”

Zero emissions

In fact,
Damen is involved in numerous EU-funded and facilitated sustainability research
projects. Subject matter includes zero-emission transport, zero accidents, zero
loss of life, zero pollution and environmentally friendly production methods.
Damen’s fully electric ferries for Danish and Canadian clients, and the Tier
III compliant Reverse Stern Drive 2513 tug are just two of the concrete
conclusions of this EU research.

Highlighting the significance of such European-wide collaborative projects – and referring to the wider impact of the numerous multi-partner projects, Van Terwisga concludes: “The European research projects provide excellent opportunities to advance our research, development and innovation agenda in cooperation with all related stakeholders. This approach ensures that the developed solutions deliver sound business potential as well as a contribution to societal challenges.”

This article was previously published in Maritime Holland magazine, issue 1, 2019.